SCALABLE INTERNET RESOURCE DISCOVERY:
RESEARCH PROBLEMS AND APPROACHES

C. Mic Bowman, Peter B. Danzig,
Udi Manber, Michael F. Schwartz

CU-CS-679-93 October 1993

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
OCT 1993 2. REPORT TYPE 00-10-1993 to 00-10-1993
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Scalable Inter net Resour ce Discovery: Research Problems and £b. GRANT NUMBER
Approaches

5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER

Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 26
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Scalable Internet Resource Discovery:
Research Problems and Approaches

C. Mic Bowman
Peter B. Danzig
Udi Manber
Michael F. Schwartz

CU-CS-679-93 October 1993

&

University of Colorado at Boulder
Technical Report CU-CS-679-93

Department of Computer Science
University of Colorado

Boulder, Colorado 80309-430

Scalable Internet Resource Discovery: Research Problems and

Approaches

C. Mic Bowman Peter B. Danzig
Computer Science Department Computer Science Department
Pennsylvania State University University of Southern California
University Park, Pennsylvania 16802-6103 941 W. 37th Place
+1 814 865 9505 Los Angeles, California 90089-0781
bowman@cs.psu.edu +1 213 740 4780

danzig@usc.edu

Udi Manber Michael F. Schwartz
Computer Science Department Computer Science Department
University of Arizona University of Colorado
Tucson, Arizona 85721 Boulder, Colorado 80309-0430

+1 602 621 4317 +1 303 492 3902
udi@cs.arizona.edu schwartz@cs.colorado.edu

October 22, 1993

Abstract

Over the past several years, a number of information discovery and access tools have been
introduced in the Internet, including Archie, Gopher, Netfind, and WAIS. These tools have
become quite popular, and are helping to redefine how people think about wide area network
applications. Yet, they are not well suited to supporting the future information infrastructure,
which will be characterized by enormous data volume, rapid growth in the user base, and
burgeoning data diversity. In this paper we indicate trends in these three dimensions, and survey
problems these trends will create for current approaches. We then suggest several promising
directions of future resource discovery research, along with some initial results from projects
carried out by members of the Internet Research Task Force Research Group on Resource
‘Discovery and Directory Service.

1 Introduction

In its roots as the ARPANET, the Internet was conceived primarily as a means of remote login
and experimentation with data communication protocols. However, the predominate usage quickly

became electronic mail in support of collaboration. This trend continued into the present incarna-
tion of the Internet, but with increasingly diverse support for collaborative data sharing activities.
Electronic mail has been supplemented by a variety of wide area filing, information retrieval, pub-
lishing and library access systems. At present, the Internet provides access to hundreds of gigabytes
each of software, documents, sounds, images, and other file system data; library catalog and user
directory data; weather, geography, telemetry, and other physical science data; and many other
types of information.

To make effective use of this wealth of information, users need ways to locate information of
interest. In the past few years, a number of such resource discovery tools have been created, and
have gained wide popular acceptance in the Internet [1-7].! Our goal in the current paper is to
examine the impact of scale on resource discovery tools, and place these problems into a coherent
framework. We focus on three scalability dimensions: the burgeoning diversity of mformatlon
systems, the growing user base, and the increasing volume of data available to users.

Table 1 summarizes these dimensions, suggests a set of corresponding conceptual layers, and
indicates problems being explored by the Internet Research Task Force (IRTF) Research Group on
Resource Discovery and Directory Service. Users perceive the available information at the informa-
tion interface layer. This layer must support scalable means of organizing, browsing, and searching.
The information dispersion layer is responsible for replicating, distributing, and caching informa-
tion. This layer must support access to information by a large, widely distributed user populace.
The information gathering layer is responsible for collecting and correlating the information from
many incomplete, inconsistent, and heterogeneous repositories.

The remainder of this paper covers these layers from the bottom up. Section 2 discusses
problems of information system diversity. Section 3 discusses the problems brought about by
growth in the user base. Section 4 discusses problems caused by increasing information volume.
Finally, in Section 5 we offer a summary.

2 Information System Diversity

An important goal for resource discovery systems is providing a conmsistent, organized view of
information. Since information about a resource exists in many repositories—within the object
itself and within other information systems—resource discovery systems need to identify a resource,

1The reader interested in an overview of resource discovery systems and their approaches is referred to [8].

Scalability Dimension | Conceptual Layer Problems Research Focus

Data Volume

Information Interface

Information Overload

Scalable Content-
Based Searching

User Base

Information Dispersion

Insufficient Replication;

Distribution Topology

Massive Replication;

Access Measurements

Data Diversity

Information Gathering

Data Extraction;
Low Data Quality

Operation Mapping;
Data Mapping

Table 1: Dimensions of Scalability and Associated Research Problems

collect information about it from several sources, and convert the representation to a format that
can be indexed for efficient searching.

As an example, consider the problem of constructing a user directory. In a typical environment,
several existing systems contain information about users. The Sun NIS database [9] usually has
information about a user’s account name, personal name, address, group memberships, password,
and home directory. The ruserd [10] server has information about a user’s workstation and its idle
time. In addition, users often place information in a “.plan” file that might list the user’s travel
schedule, home address, office hours, and research interests.

As this example illustrates, information in existing Internet repositories has the following char-
acteristics:

e [t is heterogeneous.

Fach repository maintains the information it needs about resources. For example, the pri-
mary purpose of the NIS database is to maintain information about user accounts, while a
user’s “.plan” file often contains more personal information. In addition, the two repositories
represent the information differently: records in an NIS database have a fixed format, but a
“.plan” file contains unstructured text.

e It is inconsistent.

Most information contained in Internet repositories is dynamic. Certain properties change
frequently, such as which workstations a person is using. Other properties change more slowly,
such as a user’s mail address. Because information is maintained by several repositories that
perform updates at different times using different algorithms, there will often be conflicts
between information in the various repositories. For example, information about account
name, address, and phone number may be maintained by both the NIS database and an
X.500 [11] server. When a user’s address or phone number changes, the X.500 service will
probably be updated first. However, if the account changes, the NIS database will usually be
the first to reflect the change.

e [t is incomplete.

Additional attributes of a resource can often be obtained by combining information from sev-
eral repositories. For example, a bibliographic database does not contain explicit information
about a person’s research interests. However, keywords might be extracted from the person’s
research papers, to infer research interests for a user directory.

There are two common approaches to these information gathering layer problems. The first
approach—data mapping—generates an aggregate repository from multiple information sources.
The second approach—operation mapping—constructs a “gateway” between existing systems, which
maps the functionality of one system into another without actually copying the data. Below we
discuss these approaches, and our research efforts for each.

2.1 Data Mapping

" The first approach for accommodating diversity is to collect data from a set of underlyihg reposito-
ries, and combine it into a homogeneous whole. Doing so involves two parts: mapping algorithms
for collecting information, and agreement algorithms for correlating information [12].

3

A mapping algorithm is implemented as a function that collects information from a repository
and reformats it. There may be several implementations of mapping algorithms, each customized
for an existing repository. The most common mapping algorithms are implemented as clients of an
existing service. For example, Netfind [5] extracts user information from several common Internet
services, including the Domain Naming System (DNS) [13], the finger service [14] and the Simple
Mail Transfer Protocol [15].

The agreement algorithm defines a method for handling conflicts between different repositories.
For example, Figure 1 illustrates data for the Enterprise [16] user directory system, which is built
on top of the Univers name service [12]. This figure shows three mapping algorithms that gather
information from the NIS database, the ruserd server, and the user’s electronic mail, respectively.
Several attributes can be generated by more than one mapping algorithm. For example, address
information potentially exists in both the NIS database and the information supplied by the user.
The agreement algorithm considers information gathered directly from the user as the most reliable.
Depending on the attribute, the agreement algorithm may permit some properties to have several
values, such as the two address attributes that describe the user in Figure 1.

GENERATED INFORMATION

GROUPS: ¢s576, univers, xkernel, csgrads
HOME:/home/curly/mjackson
SHELL:/bin/tcsh

ACCOUNT:mjackson

NIS Database NAME:Mark Jackson

NAME:Mark Edward Jackson
ADDRESS:24B Whitmore . .
ADDRESS:156 Dendron Rd, State College 16801 Email
PHONE:8641242
PHONE:8641242

RESEARCH:multicast and group communication

RUSERD WORKSTATION:itosu
| {IDLE:0:02

Figure 1: Example Mapping Algorithms for User Directory Information

Data mining represents a special form of agreement algorithm, which works by cross-correlating
information available from multiple repositories. This can have two benefits. First, it can flag
inconsistencies. For example, Enterprise could inform users if it detected conflicts between the
electronic mail addresses listed in different repositories. Second, data mining can deduce implicit
information by cross-correlating existing information. For example, Netfind continuously collects
and cross-correlates data from a number of sources, to form a far-reaching database of Internet
sites. One source might discover a new host called “astro.columbia.edu” from DNS traversals, and
cross-correlate this information with the existing site database record for columbia.edu (“columbia
university, new york, new york”), its understanding of the nesting relationships of the Domain name
space, and a database of departmental abbreviations, to derive a new record for the Astronomy
Department at Columbia University.

Mapping and agreement algorithms generally operate best when they exploit the semantics of
specific resource discovery applications. In the above Netfind example this was possible because
the data were gathered from particular services, each with semantics that Netfind understands.

More generally, data gathering depends on some data type structure to help select semantically-

4

specific gathering methods. We are exploring a variety of data typing approaches in the context of
gathering file system data. We now briefly consider the problems that arise in typing and gathering
this data. :

To gather information effectively from file system data, it is helpful to extract information in
different ways depending on file type. For example, while it is possible to index every token in
program source code, the index will be smaller and more useful if it distinguishes the variables and
procedures defined in the file. In contrast, applying this data gathering algorithm to a program’s
associated textual documentation will not yield the most useful information, as it has a different
structure. By typing data, information can be extracted in whichever way is most appropriate for
each type of file.

File data can be typed explicitly or implicitly. Explicitly typing files has the advantage that
it simplifies data gathering. An explicitly typed file conforms to a well known structure, which
supports a set of conventions for what data should be extracted. Explicit typing is most naturally
performed by the user when a file is exported into the resource discovery system. We are exploring
this approach in the Nebula file system [17] and Indie discovery tool [18].

Many files exist without explicit type information, as in most current anonymous FTP? files.
An implicit typing mechanism can help in this case. For example, Essence [20] uses a variety of
heuristics to recognize files as fitting into certain common classes, such as word processor source
text or binary executables. These heuristics include common naming conventions or identifying
features in the data. The MIT Semantic File System uses similar techniques [21].

Given a typed file, the next step is to extract indexing information. This can most easily
be accomplished through automatic content extraction, using a grammar that describes how to
extract information from each type of file. For example, given a TeX word processing document,
the grammar could describe where to extract author, title, and abstract information. For cases
where more complex data extraction methods are needed, one can provide an “escape” mechanism
that allows arbitrary data extraction programs to be run. '

Automatic extraction methods have the advantage that they can provide an immediate base of
usable information, but in general will generate some inappropriate keywords and miss generating
other, desirable keywords. For this reason, it is prudent to augment these methods with means by
which people can manually override the automatically extracted data.

In many cases file indexing information can be extracted from each file in isolation. In some
cases, however, it is useful to apply extraction procedures based on the relationships between files.
For example, binary executable files can sometimes be indexed by gathering keywords from their
corresponding documentation. One can use heuristics to exploit such implicit inter-file relationships
for common cases, augmented by means of specifying explicit relationships. For example, we
are exploring an approach that allows users to create files in the file system tree that specify
relationships among groups of files.

One final observation about data type structure is that the index should preserve type infor-
mation to help identify context during searches. For example, keywords extracted from document
titles can be tagged in the index so that a query will be able to specify that only data extracted from
document titles should match the query. This stands in contrast to the common approach (used by
WAIS [2], for example) of allowing a free association between query keywords and extracted data.

*FTP is an Internet standard protocol that supports transferring files between interconnected hosts [19]. Anony-
mous FTP is a convention for allowing Internet users to transfer files to and from machines on which they do not

have accounts, for example to support distribution of public domain software.

We discuss indexing schemes further in Section 4.2.

2.2 Operation Mapping

A gateway between two resource discovery systems translates operations from one system into
operations in another system. Ideally, the systems interoperate seamlessly, without the need for
users to learn the details of each system. Sometimes, however, users must learn how to use each
system separately.

Building seamless gateways can be hindered if one system lacks operations needed by another
system’s user interface [8]. For example, if would be difficult to provide a seamless gateway from a
system (like WAIS) that provides a search interface to users, to a system (like Prospero [6]) that
only support browsing. Even if two systems support similar operations, building seamless gateways
may be hindered by another problem: providing appropriate mappings between operations in the
two systems. To illustrate the problem, consider the current interim gateway from Gopher [3] to
Netfind, illustrated in Figure 2.> Because the gateway simply opens a telnet window to a UNIX
program that provides the Netfind service, users perceive the boundaries between the two systems.

1 select an item from the list - 1
———— ————————_— ——

Internet-wide e-mail address searches

Netfind search for Internet e-mail addresses overview

Netfind server at AARNet (Melbourne, Australia)

Netfind server at Catholic University, Santiago, Chile

Netfind server at OpenConnect Systems, Dallas., Texas

Netfind server at Slovak Zcademy of Sciences, Czech and Slovak Fed. Repub.
Netfind server at University of Alabama, Birmingham

Netfind server at University of Minnesota

- Netfind server at the University of Colorado.
USENET contributor e-mail addresses

USENET contributor e-mail addresses overview
<tel> X.500 directory i
{(#] telnet B
IFet Trying 128.138.243.151 ...

selg Connected to bwumD.C§gcclnrado.edu.

Escape character is 1-

Sun0S UNIX (brunod
Login as "netfind” to access netfind server

login: [

Figure 2: Gopher Menu-Level Gateway to Netfind

In contrast, we have built a system called Dynamic WAIS [22], which extends the WAIS
paradigm to support information from remote search systems (as opposed to the usual collec-

3Efforts are under way to improve this gateway.

tion of static documents). The prototype supports gateways from WAIS to Archie and to Netfind,
using the Z39.50 information retrieval protocol [23] to seamlessly integrate the information spaces.
The Dynamic WAIS interface to Netfind is shown in Flgure 3.

o) KWAIS

[] X WAIS Question: Netfind

Tell me about:

[schwam s colorada
In Sources: Similar to:
-]__”___le_w} [AddSwrce”DelewSuuree[Add D ‘{

Sources:

adu,

1000 64§ OK (Dlﬂ]l/%) depamnent colorad.n state ll.mvelslty, fort collins
1000 64.0K {01401/93) cs.du.edn computer selence department, university of denver, denver, colorado

disi-catalog.src
DOE_Climate_Data.sy

d . [@] cs.colorado.edu computer science departraent, university of colorade, boulder
i [l{ 0) check_name: checking domain es. edn. Level =0
i@ MAIL IS FORWARDED TO schwartz@ cs.colorado.edu
- e I NOTE: this is a domain mail forwardi 0 mail intended
dynaniie-netfind.sre for “schwartz" should be add.ressed to "schwm‘tz@cs .colorado.edu"
EC-enzyme.sre rather than “schwar 1
edis.sxe (0] heck hecking host latour. lorado.edu, Level =0
¢l name: ¢l st latour.cs.colorado.edn. Level =
eff-documents.sre | g SYSTEM: latour.cs.colorado.edn
eff-talk.sre Login name: schwartz In real life: Mike Schwartz
05— NS D].recum] /home/latour/schwartz ~ Shell: /binlesh
- On since Mar 16 09:14:24 on console 29 seconds Idle Time
No unread mall
Project: Resource Discovery and WAN measurement
Help - Status: Plan:
B o " Department of Computer Science
Opening question: Netfind University of Colorado
~ Boulder, CO 803090430
+1 303 492 3902
schwartz{@cs.colorado.edu

: AdﬂSectinnHFindKey}|Previuus“$ave'l‘ol-‘ileI
A4 Status: | I

Figure 3: Dynamic WAIS Information-Level Gateway to Netfind

The key behind the Dynamic WAIS gateways is the conceptual work of constructing the map-
pings between the WAIS search-and-retrieve operations, and the underlying Archie and Netfind
operations. In the case of Netfind, for example, when the Dynamic WAIS user requests a search
using the “dynamic-netfind.src¢” WAIS database, the search is translated to a lookup in the Netfind
site database, to determine potential domains to search. The Netfind domain selection request
is then mapped into a WAIS database selection request (the highlighted selection in the XWAIS
Question window). Once the user selects one of the domains to search, the WAIS retrieval phase
is mapped into an actual domain search in Netfind (the uppermost window).

We are developing these techniques further, to support gateways to complex forms of data, such
as scientific databases.

3 User Base Scale

New constituencies of users will make the Internet grow significantly beyond its present size of 2
million nodes. This growth will overburden the network’s resource discovery services unless we
address five problems of scale. First, discovery services should monitor data access patterns to de-

termine how best to replicate themselves, to determine whether to create specialized services that
manage hot subsets of their data, and to diagnose accidentally looping clients. Second, discovery
services should support significantly higher levels of replication, using algorithms specifically de-
signed to function in the Internet’s dynamic patchwork of autonomous systems. Third, the diversity
of information resources requires that services be specialized to support particular topics and user
communities. Fourth, the range of user expertise and needs require that user interfaces and search
strategies be highly customizable. Fifth, the Internet will need a hierarchically structured, extensi-
ble, object caching service through which clients can retrieve data objects, once they’re discovered.
We consider these issues below.

3.1 Server Instrumentation

The designers of new information systems can never fully anticipate how their systems will be used.
For this reason, we believe that new Internet services should instrument their query streams.

Self-instrumented servers could help determine where to place additional replicas of an entire
service: If some X.500 server in Europe finds that half of its clients are in the United States, the
server itself could suggest that a strategically located replica be created.

Self-instrumented servers could also identify the access rate of items in their databases for
use by more specialized services. For example, an instrumented Archie server would note that
properly formed user queries only touch about 16% of Archie’s database. Such instrumentation
would enable the creation of a complementary service that reported only popular, duplicate free,
or nearby objects. We discuss these ideas more in Section 4.2.

Self-instrumented servers could also identify server-client or server-server communication run
amok. Large distributed systems frequently suffer from undiagnosed, endless cycle of requests. For
example, self-instrumented Internet name servers show that DNS traffic consumes 20 times more
bandwidth than it should, because of unanticipated interactions between clients and servers [24].
Self-instrumentation could identify problem specifications and implementations before they become
widespread and difficult to correct.

3.2 Server Replication

Name servers scale well because their data are typically partitioned hierarchically. Because resource
discovery tools search flat, rather than hierarchical or otherwise partitionable views of data, the
only way to make these tools scale is by replicating them. To gain an appreciation for the degree
of replication required, consider the Archie file location service.

The global collection of Archie servers process approximately 50,000 queries per day, generated
by a few thousand users worldwide. Every month or two of Internet growth requires yet another
replica of Archie. Thirty Archie servers now replicate a continuously evolving 150 MB database of
2.1 million records. While a query posed on a Saturday night receives a response in seconds, it can
take several hours to answer the same query on a Thursday afternoon. Even with no new Internet
growth, for Archie to yield five second response times during peak hours we would need at least
sixty times more Archie servers than the current 30. Because of its success and the continual rapid
growth of the Internet, in time Archie will require thousands of replicas. Other successful tools
that cannot easily partition their data will also require massive replication.

We believe massive replication requires additional research. On the one hand, without doubt

we know how to replicate and cache data that partitions easily, as in the case of name servers
[13,25]. Primary copy replication works well because name servers do not perform associative
access, and organizational boundaries limit the size of a domain, allowing a handful of servers to
meet performance demands.* We have learned many lessons to arrive at this understanding [24,
26,27]. On the other hand, we have little experience deploying replication and caching algorithms
to support massively replicated, flat, yet autonomously managed databases.

What do existing replication schemes for wide-area services lack? First, existing replication
systems ignore network topology. They do not route their updates in a manner that makes efficient
use of the Internet. One day, some nascent, streaming reliable multicast protocol might serve this
purpose. Today, we believe, it is necessary to calculate the topology over which updates traverse
and to manage replication groups that exploit the Internet’s partitioning into autonomous domains.

- Second, existing schemes do not guarantee timely and efficient updates in the face of frequent
changes in physical topology, network partition, and temporary or permanent node failure. In
essence, they treat all physical links as having equal bandwidth, delay, and reliability, and do not
recognize administrative domains.

We believe that flooding-based replication algorithms can be extended to work well in the
Internet environment. Both Archie and network news [28] replicate using flooding algorithms.
However, for lack of good tools, administrators of both Archie and network news manually configure
- the flooding topology over which updates travel, and manually reconfigure this topology when the
physical network changes. This is not an easy task because Internet topology changes often, and
hand-composed maps are never current. While we are developing tools to map the Internet [29],
even full network maps will not automate update topology calculation.

Avoiding topology knowledge by using today’s multicast protocols [30,31] for data distribution
fails for other reasons. First, these protocols are limited to single routing domains, or require
manually placed tunnels between such domains. Second, Internet multicast attempts to minimize
message delay, which is the wrong metric for bulk transport. At the very least, we see the need
for different routing metrics. Third, more research is needed into reliable, bulk transport multicast
that efficiently deals with site failure, network partition, and changes in the replication group.

We are exploring an approach to providing massively replicated, loosely consistent services [18,
32]. This approach extends ideas presented in Lampson’s Global name service [33] to operate in the
Internet. Briefly, our approach organizes the replicas of a service into groups, imitating the idea
behind the Internet’s autonomous routing domains. Group replicas estimate the physical topology,
and then create an update topology between the group members.

3.3 Data Object Caching

We believe that the Internet needs a hierarchically organized object caching service, through which
search clients can retrieve the data objects they discover. We say this for two reasons.

First, people currently use F'TP and electronic mail as a cacheless, distributed file system [34, 35].
Since the quantity and size of read-mostly data objects grows as we add new information services,
an object cache would improve user response times and decrease network load (e.g., we found that
one fifth of all NSFNET backbone traffic could be avoided by caching FTP data). Second, caches
protect the network from looping client programs that repeatedly retrieve the same object. While

*Because it is both a name service and a discovery tool, X.500 could benefit from massive replication.

the cache does not fix the faulty components, it does isolate the fault. A caching service would
obviate the need for every new client and Internet service to implement its own data cache.

3.4 Server Specialization

While server replication and object caching reduce network and server load, they do not solve
the problem of organizing and discovering objects of interest from vast, unspecialized, information
spaces. This is an important problem - it is safe to say that at least 99% of the available data is of
no interest to at least 99% of the users. The obvious solution is to construct specialized archives for
particular domains of interest. We believe that new techniques are needed to simplify the process
of managing specialized archives.

Currently, specialized archives rely on 1) direct contributions from their communities, and 2)
administrators who contribute time and expertise to keep the collections well structured. Except
for replication (or mirrors as they are usually called in the Internet) of FTP files, archives do not
cooperate among themselves.

We see the need for a discovery architecture and set of tools that easily let people create
specialized services and that automatically discover information from other services, summarize it,
keep it consistent, and present it to the archive administrator for his/her editorial decision. An
important component of any complete solution is a directory of services in which archives describe
their interest specialization and keep this definition current.

This approach essentially amounts to defining archives in terms of queries [16,18]. A server
periodically uses its query to hunt throughout the Internet for relevant data objects. One type of
server could, for example, be specialized to scan FTP archives, summarizing files and making these
summaries available to yet other services.

Such an architecture could greatly reduce the manual steps that archive administrators cur-
rently perform to incorporate users’ contributions. This architecture would also help users discover
smaller, highly specialized archives.

3.5 Client Customization

People have different search styles and needs. Allowing users flexible customization can be a great
help. To see how this can be done, consider the analogy of a newcomer to a town. One first
establishes general acquaintance with the town layout and major services. One then learns about
services close to one’s heart - for example, clubs, specialized stores, and recreation facilities - usually
by word of mouth, the media, or advertizing. After a while, one develops networks of friends, better
knowledge of different services, and experience based on habits and interests. This is a continuing
process, because new facilities appear, and one’s interests evolve. The same process occurs on a
much larger scale in the Internet, and suggests ways that interactions between users and discovery
services can be made flexible. Below we discuss three types of customization that can be addressed
in discovery tools, based on some of our experimental systems.

The first type of customization involves tracking a person’s search history. For example, recently
one of this paper’s authors discovered that the New Republic magazine was available online while
browsing Gopherspace via Mosaic [36]. But only two days later it took him 15 minutes to navigate
back to the same place. To address this problem, the user interface can keep track of previous
successful and unsuccessful queries, comments a user made on past queries, and browsing paths.

10

Existing systems record some of this information (e.g., the ability to set “bookmarks” in Gopher
and Mosaic); saving the whole history can help further. For example, we built a system that
records the paths users traverse when browsing FTP directories, and allows this information to
be searched [37]. It is also helpful to record search history, and allow the searches themselves to
be searched. For example, the X-windows interface to agrep [38] translates every command into
the corresponding agrep statement, and allows flexible retrieval of this information. This type of
history can support queries such as “What was the name of the service that allowed me to search
for XY7Z that I used about a year ago?”

The second type of customization is the ability to choose not only according to topic but also
according to context and other attributes. If the search is for papers on induction, for example,
knowledge of whether the searcher is a mathematician or an electrical engineer can be very useful.
When one looks for a program named ZYX using Archie, for example, it would be useful to specify
a preference for, say, a UNIX implementation of the program.

The third type of customization is ranking. WAIS provides one form of ranking, in which
matched documents are ordered by frequency of occurrence of the specified keywords. However, it
would be useful to allow users to customize their notion of ranking, so that they could choose to
rank information by quality or reliability. Clearly, these notions are very subjective. If we are naive
users, we may want information from someone who knows how to build easy-to-use systems; if we
are academics, we may want information from someone with deep understanding; if we absolutely
positively need it by tomorrow, we want someone who can deliver, and so on. We believe that in
time the Internet will support many types of commercial and non-profit review services, and people
will subscribe and follow recommendations from reviewers they trust (just like they go to movies
or buy refrigerators based on reviews).

Customizations like the ones discussed here are missing from most current resource discovery
client programs because they were not designed to be extensible (like the Emacs text-editor[39]).

4 Data Volume

The amount of information freely available in the Internet is huge and growing rapidly. New
usage modes will contribute additional scale. For example, as multimedia applications begin to
proliferate, users will create and share voluminous audio, image, and video data, adding several
orders of magnitude of data. Many users already store voluminous data, but do not share it over the
Internet because of limited wide-area network bandwidths. For example, earth and space scientists
collect sensor data at rates as high as gigabytes per day [40]. To share data with colleagues, they
send magnetic tapes through the postal mail. As Internet link capacities increase, more scientists
will use the Internet to share data, adding several more orders of magnitude to the information
space.

While resource discovery tools must deal with this growth, the scaling problems are not quite
as bad as they may seem, because the number and size of “searchable items” need not grow as
fast. Resource discovery tools may be needed to find the existence and location of gigabytes or
terabytes of raw sensor data, but probably they will not search or otherwise process all this data.
A reasonably small-sized descriptor object will be sufficient to point anyone to this data. Only this
descriptor object will need to be searched and indexed. The same holds for sound, video, and many
other types of non-textual data. Searching image files is desirable, but current pattern matching

11

techniques are still too slow to allow large-scale image processing on-the-fly. Again, a descriptor
object can be associated with every image, describing it in words.

Below we discuss two common means of supporting resource discovery among large information
spaces — browsing and searching.

4.1 Browsing and Searching

Loosely speaking, there are two resource discovery paradigms in common use in the Internet:
organizing/browsing, and searching. Organizingrefers to the human-guided process of deciding how
to interrelate information, usually by placing it into some sort of a hierarchy (e.g., the hierarchy of
directories in an FTP file system). Browsing refers to the corresponding human-guided activity of
exploring the organization and contents of a resource space. Searching is a process where the user
provides some description of the resources being sought, and a discovery system locates information
that matches the description.

We believe that a general discovery system will have to employ a combination of both paradigms.
Let’s analyze the strengths and weaknesses of each paradigm. The main weakness of organizing is
that it is typically done by “someone else” and it is not easy to change. For example the Library of
Congress Classification System has Cavalry and Minor Services of Navies as two second level topics
(under “Military Science” and “Naval Science” respectively), each equal to all of Mathematical
Sciences (a second level topic under “Science”), of which computer science is but a small part.®
Ironically, this is also the main strength of organizing, because people prefer a fixed system that
they can get used to, even if it is not the most efficient.

Browsing also suffers from this problem because it typically depends heavily on the quality and
relevance of the organization. Keeping a large amount of data well organized is difficult. In fact,
the notion of “well organized” is highly subjective and personal. What one user finds clear and easy
to browse may be difficult for users who have different needs or backgrounds. Browsing can also
lead to navigation problems, and users can get disoriented [41,42]. To some extent this problem
can be alleviated by systems that support multiple views of information [6,43]. Yet, doing so really
pushes the problem “up” a level—users must locate appropriate views, which in itself is another
discovery problem. Moreover, because there are few barriers to “publishing” information in the
Internet (and we strongly believe there should not be any), there is a great deal of information
that is useful to only very few users, and often for only a short period of time. To other users, this
information clutters the “information highway”, making browsing difficult.

Searching is much more flexible and general than organizing/ browsing, but it is also harder for
the user. Forming good queries can be a difficult task, especially in an information space unfamiliar
to the user. On the other hand, users are less prone to disorientation, the searching paradigm can
handle change much better, and different services can be connected by searching more easily than
by interfacing their organizations.

Many current systems, such as WAIS, Gopher, and WorldWideWeb [4], employ an organization
that is typically based on the location of the data, with limited searching facilities usually per item
or per location. Browsing is the first paradigm that users see, but once a server or an archive is
located, some type of searching is also provided. The searching can be comprehensive throughout
the archive (for example, WAIS servers provide full-text indexes) or limited to titles or current

pages.

®There was a time, of course, when the study of cavalry was much more important than the study of computers.

12

4.2 Indexing Schemes

The importance of searching can be seen in its increasing popular appeal. A number of file system
search tools have been introduced in recent years [20,21,44,45], and recently a search facility [46]
was introduced for Gopher - which is, without doubt, the world’s largest browse-based system.
Moreover, it is interesting to note that while the Prospero model [47] focuses on organizing and
browsing, Prospero has found its most successful application as an interface to the Archie search
system. Because of the importance of searching, we now consider means of indexing data to support
efficient searching.

The indexing schemes in the Internet tend to fall into two extremes: full indexing of selected
sites (WAIS, Gopher) and indexing of very selected information from all sites (Archie, UNIX find-
codes [48], and the Netfind site database [49]). By selecting relatively small but important infor-
mation such as file names Archie quickly became the most popular search-based resource discovery
tool in the Internet. But as we discussed in Section 3.2, Archie has scale problems. One way to
overcome some of these problems is to introduce some hierarchy into the indexing mechanism in
Archie (and similar tools). In addition to one flat database of all file names, it is possible to main-
tain much smaller slightly limited databases that will be replicated widely. For example, we can
detect duplicates (exact and/or similar, see [50]), and keep only one copy (e.g., based on locality)
in the smaller databases. Most queries will be satisfied with the smaller databases, and only few
of them will have to go further.

The scale problems for full texts are much more difficult. Full-text indexes are almost always
inverted indexes, which store pointers to every occurrence of every word (possibly excluding some
very common words). The main problems with inverted indexes are their size — usually 50-150% of
the original text — and the time it takes to build and/or update them. Therefore, maintaining an
inverted index of the whole Internet FTP space is probably out of the question. But separate local
indexes, which is what we have now, do not present a general enough view of much of the available
information. Users often need to perform a lengthy browsing session to find the right indexes, and
they often miss. This problem will only get worse with scale.

We envision a search system that connects local indexes and many other pieces of information
via a multi-level indexing scheme. We briefly list some characteristics of such a scheme. A detailed
description is beyond the scope of this paper. The main principle behind such a scheme is that the
number of search terms is quite limited no matter how much data exists. Search terms are mostly
words, names, technical terms, etc, and the number of those is on the order of 10° to 107, but
more importantly, this number grows more slowly than the general growth of information. Inverted
indexes require enormous space because they catalog all occurrences of all terms. But if we index,
for each term, only pointers to places that may be relevant, we end up with a much smaller index.
Searching will be similar to browsing in the sense that the result of each query may be a list of
suggestions for further exploration.

The main advantage of such a scheme is that the index can be partitioned in several ways,
which makes it scalable. Specialized archives will, of course, keep their local indexes. Several local
indexes can be combined to form a two-level index, in which the top level can only filter queries
to a subset of the local indexes. For example, separate collections of technical reports can form a
combined index. Indexes can also be combined according to topics or other shared attributes. The
directory of services could be another index (but more widely replicated), which contains pointers
to information about common terms and local information. There could also be a more detailed

13

directory maintained at some servers with knowledge about more terms. Users could navigate by
a combination of browsing and searching. In contrast with fixed browsing, this type of navigation
will allow users to skip many levels, to better customize their searches, and to more easily combine
information from different sources. There are, of course, many issues that need to be resolved,
including ranking, classification, replication, consistency, data extraction, privacy, and more.

An example (at a smaller scale) of the multi-level approach is Glimpse [44], an indexing and
searching scheme designed for file systems. Glimpse divides the entire file system into blocks,
and in contrast with inverted indexes, it stores for each word only the block numbers containing
it. The index size is typically only 2-4% of the text size. The search is done first on the index
and then on the blocks that match the query. Glimpse supports approximate matching, regular
expression matching, and many other options. Other examples of similar approaches include the
scatter/gather browsing approach [51], the Alex file system’s “archia” tool [52], and Veronica [46].

Essence and the MIT Semantic File System do selective indexing of documents, selecting key-
words based on knowledge of the structure of the documents being indexed. For example, Essence
understands the structure of several common word processing systems (as well as most other com-
mon file types in UNIX environments), and uses this understanding to extract authors, titles, and
abstracts from text documents. In this way, it is able to select fewer keywords for the index, yet
retain many of the keywords that users would likely use to locate documents. Because these types
of systems exploit knowledge of the structure of the documents being indexed, it would be possible
to include document structure information in the index. This idea was discussed in Section 2.

5 Summary

The Internet’s rapidly growing data volume, user base, and data diversity will create difficult
problems for the current set of resource discovery tools. Future tools must scale with the diversity
of information systems, number of users, and size of the information space.

With growing information diversity, techniques are needed to gather data from heterogeneous
sources and sort through the inherent inconsistency and incompleteness. Internet Research Task
Force efforts in this realm focus on application-specific means of extracting and cross-correlating
information, based on both explicit and implicit data typing schemes.

With a growing user base, significantly more load will be placed on Internet links and servers.
This load will require much more heavily replicated servers and more significant use of data caching;
servers specialized to support particular user communities; highly customizable client interfaces; and
self-instrumenting servers to help guide replication and specialization. IRTF efforts in this realm
focus on flooding-based replication algorithms that adapt to topology changes, and on customized
clients.

As the volume of information continues to grow, organizing and browsing data break down as
primary means for supporting resource discovery. At this scale, discovery systems will need to
support scalable content-based search mechanisms. Current systems tend to strike a compromise
between index representativeness and space efficiency. Future systems will need to support indexes
that are both representative and space efficient. IRTF efforts in this realm focus on scalable content-
based searching algorithms, and on connecting local indexes and many other pieces of information
via a multi-level indexing scheme.

14

Acknowledgements

Bowman is supported in part by the National Science Foundation under grants CDA-8914587 and
CDA-8914587A02, the Advanced Research Projects Agency under contract number DABT63-93-
C-0052, and an equipment grant from Sun Microsystems, Inc.

Danzig is supported in part by the Air Force Office of Scientific Research under Award Num-
ber F49620-93-1-0082, and by the Advanced Research Projects Agency under contract number
DABT63-93-C-0052.

Manber is supported in part by the National Science Foundation under grant numbers CCR-
9002351 and CCR-9301129, and by the Advanced Research Projects Agency under contract number
DABT63-93-C-0052. ‘

Schwartz is supported in part by the National Science Foundation under grant numbers NCR-
9105372 and NCR-9204853, the Advanced Research Projects Agency under contract number DABT63-
93-C-0052, and an equipment grant from Sun Microsystems’ Collaborative Research Program.

We thank Alan Emtage for providing us with the Archie logs that led to some of the results in
Section 3.1. Panos Tsirigotis implemented the software needed for analyzing this data.

The information contained in this paper does not necessarily reflect the position or the policy of
the U.S. Government or other sponsors of this research. No official endorsement should be inferred.

Author Information

C. Mic Bowman is an Assistant Professor of Computer Science at the Pennsylvania State University.
He received his Ph.D in Computer Science from the University of Arizona in 1990. His research
interests include descriptive naming systems for local and wide area file systems, resource discovery,
and protocols for remote computing. Bowman can be reached at bowman®@cs.psu.edu.

Peter B. Danzig is an Assistant Professor of Computer Science at the University of Southern
California. He received his Ph.D in Computer Science from the University of California, Berkeley in
1990. His current research addresses on the measurement and performance debugging of Internet
services, distributed system architectures for resource discovery, and mathematical modeling of
communication networks. Danzig can be reached at danzig@usc.edu.

Udi Manber is a Professor of Computer Science at the University of Arizona. He received
his Ph.D in Computer Science from the University of Washington in 1982. His research interests
include design of algorithms, pattern matching, computer networks, and software tools. Manber
can be reached at udi@cs.arizona.edu.

Michael F. Schwartz is an Assistant Professor of Computer Science at the University of Col-
orado. He received his Ph.D in Computer Science from the University of Washington in 1987. His
research focuses on issues raised by international networks and distributed systems, with particu-
lar focus on resource discovery and wide area network measurement. Schwartz can be reached at
schwartz@cs.colorado.edu.

References

[1] A. Emtage and P. Deutsch, “Archie: An electronic directory service for the Internet,” Pro-
ceedings of the Winter 1992 Useniz Conference, pp. 93-110, January 1992.

15

[2]

[3]

[4]

[10]

[11]

B. Khale and A. Medlar, “An information system for corporate users: Wide Area Information
Servers,” ConneXions - The Interoperability Report, vol. 5, no. 11, pp. 2-9, November 1991.

M. McCahill, “The Internet Gopher: A distributed server information system,” ConneXions
- The Interoperability Report, vol. 6, no. 7, pp. 10-14, July 1992.

T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-Wide Web: The infor-
mation universe,” FElectronic Networking: Research, Applications and Policy, vol. 1, no. 2,
pp. 52-58, Spring 1992.

M. F. Schwartz and P. G. Tsirigotis, “Experience with a semantically cognizant internet white
pages directory tool,” Journal of Internetworking: Research and FEzperience, vol. 2, no. 1,
pp. 23-50, March 1991.

B. C. Neuman, “Prospero: A tool for organizing internet resources,” Electronic Networking:
Research, Applications, and Policy, vol. 2, no. 1, pp. 30-37, Spring 1992.

R. E. Droms, “Access to heterogeneous directory services,” Proceedings of the IEEE INFOCOM
’90, June 1990.

M. F. Schwartz, A. Emtage, B. Kahle, and B. C. Neuman, “A comparison of Internet resource
discovery approaches,” Computing Systems, vol. 5, no. 4, pp. 461-493, Fall 1992.

P. Weiss, Yellow Pages Protocol Specification. Sun Microsystems, Inc., 1985.
S. Microsystems, “Sunos reference manual, volume II,” Mar. 1990.

International Organization for Standardization, “Information Processing Systems — Open Sys-
tems Interconnection — The Directory — Overview of Concepts, Models, and Service.,” tech.
rep., International Organization for Standardization and International Electrotechnical Com-
mittee, December 1988. International Standard 9594-1.

M. Bowman, L. L. Peterson, and A. Yeatts, “Univers: An attribute-based name server,”
Software - Practice & Fxperience, vol. 20, no. 4, pp. 403—-424, April 1990.

P. Mockapetris, “Domain names - concepts and facilities.” RFC 1034, November 1987.

D. Zimmerman, “RFC 1288: The finger user information protocol,” Internet Request for Com-
ments, November 1990.

J. B. Postel, “RFC 821: Simple Mail Transfer Protocol,” Internet Request for Comments, Aug.
1982.

C. M. Bowman and C. Dharap, “The Enterprise distributed white-pages service,” Proceedings
of the USENIX Winter Conference, pp. 349-360, January 1993.

C. Dharap, R. Balay, and M. Bowman, “Type structured file systems,” Proceedings of the
International Workshop on Object-Orientation in Operating Systems, December 1993.

P. B. Danzig, S.-H. Li, and K. Obraczka, “Distributed indexing of autonomous Internet ser-
vices,” Computing Systems, vol. 5, no. 4, pp. 433-459, Fall 1992.

16

[19] J. Postel and J. Reynolds, “Rfc 959: File transfer protocol (FTP),” tech. rep., Umversrcy of
Southern California Information Sciences Institute, October 1985.

[20] D. Hardy and M. F. Schwartz, “Essence: A resource discovery system based on semantic file
indexing,” Proceedings of the USENIX Winter Conference, pp. 361-374, January 1993.

[21] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O. Jr, “Semantic file systems,” in
Proceedings of 13th ACM Symposium on Operating Systems Principles, pp. 16-25, October
1991.

[22] D. R. Hardy, “Scalable internet resource discovery among diverse information,” tech. rep.,
Department of Computer Science, University of Colorado, Boulder, Colorado, May 1993. M.S.
Thesis.

[23] ANSI, ANSI Z39.50. American National Standards Institute, May 1991. Version 2, Third
Draft. ‘

[24] P. B. Danzig, K. Obraczka, and A. Kumar, “An analysis of wide-area name server traffic: A
study of the Domain Name System,” ACM SIGCOMM 92 Conference, pp. 281-292, August
1992.

[25] A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder, “Grapevine: An exercise in
distributed computing,” Communications of the ACM, vol. 25, no. 4, pp. 260-274, April 1982.

[26] P. Mockapetris and K. Dunlap, “Development of the Domain Name System,” Proc. of the
ACM SIGCOMM ’88, Stanford, California, pp. 11-21, August 1988.

[27] M. Schroeder, A. Birrell, and R. Needham, “Experience with Grapevine: The growth of a
distributed system,” ACM Trans. on Computer Systems, vol. 2, no. 1, pp. 3-23, February
1984.

[28] J. Quarterman, The Matriz - Computer Networks and Conferencing Systems Worldwide. Dig-
ital Press, 1990.

[29] D. C. M. Wood, S. S. Coleman, and M. F. Schwartz, “Fremont: A system for discover-
ing network characteristics and problems,” Proceedings of the USENIX Winter Conference,
pp- 335-348, January 1993.

[30] S. Deering and D. Cheriton, “Multicast routing in datagram internetworks and extended lans,”
ACM Transactions on Computer Systems, vol. 8, no. 2, pp. 85-110, May 1990.

[31] S. Armstrong, A. Freier, and K. Marzullo, “Multicast transport protocol.” RFC 1301, February
1992.

[32] K. Obraczka, P. Danzig, D. DeLucia, and N. Alaam, “Massive replication of data in au-
tonomous internetworks,” Technical Report, University of Southern California, March 1993.

[33] B. Lampson, “Designing a global name service,” ACM Principles of Distributed Computing,
pp. 1-10, August 1986.

17

[34] P. B. Danzig, M. Schwartz, and R. Hall, “A case for object caching in wide-area internetworks,”
ACM SIGCOMM 93 Conference, pp. 239-248, March, 1993.

[35] V. Paxson, “Empirically-derived analytic models of wide-area tcp connections: Extended re-
port,” Tech. Rep. TR LBL-34986, Lawrence Berkeley Labs, June 15, 1993.

[36] M. Andreessen, “Ncsa mosaic technical summary,” tech. rep., National Center for Supercom-
puting Applications, MAY 1993.

[37] M. F. Schwartz, D. R. Hardy, W. K. Heinzman, and G. Hirschowitz, “Supporting resource
discovery among public internet archives using a spectrum of information quality,” Proceedings
of the Eleventh International Conference on Distributed Computing Systems, pp. 82-89, May
1991.

[38] S. Wu and U. Manber, “Fast text searching allowing errors,” Communications of the ACM,
pp- 83-91, October 1992.

[39] R. Stallman, GNU Emacs Manual, sixth ed., Mar. 1987.

[40] J. C. French, A. K. Jones, and J. L. Pfaltz, “Scientific database management,” tech. rep.,
August 1990. Final Workshop Report.

[41] F. Halasz, “Reflections on notecards: Seven issues for the next generation of hypermedia,”
Communications of the ACM, vol. 31, no. 7, pp. 836-852, July 1988. '

[42] J. Conklin, “Hypertext: An introduction and survey,” Computer, vol. 20, no. 9, pp. 17-41,
September 1987.

[43] D. Comer and T. P. Murtaugh, “The Tilde file naming scheme,” Proceedings of the Sizth
International Conference on Distributed Computing Systems, pp. 509-514, May 1986.

[44] U. Manber and S. Wu, “Glimpse: A tool to search through entire file systems,” Proceedings of
the USENIX Winter Conference, January 1994. To appear.

[45] SunSoft, Searchlt 1.0. SunSoft, Inc., 1992. User’s Guide.

46] S. Foster, “About the Veronica service,” November, 1992. Electronic bulletin board postin
P g
on the comp.infosystems.gopher newsgroup.

[47] B. C. Neuman, “The virtual system model: A scalable approach to organizing large systems.”
Technical Report 90-05-01, Department of Computer Science and Engineering, University of
Washington, Seattle, Washington, May 1990.

[48] U. Berkeley, UNIX User’s Manual Reference Guide, 4.8 BSD. Computer Systems Research
Group, Computer Science Division, EECS, University of California, Berkeley, April 1986.

[49] M. F. Schwartz and C. Pu, “Application-specific resource discovery in a changing and growing
internet,” Tech. Rep. CU-CS-656-93, Department of Computer Science, University of Colorado,
Boulder, Colorado, 1993. In preparation.

18

[50] U. Manber, “Finding similar files in a large file system,” Proceedings of the USENIX Winter
Conference, January 1994. To appear.

[51] D. R. Cutting, D. R. Karger, and J. O. Pederson, “Constant interaction-time scatter/gather
browsing of very large document collections,” Proceedings of the ACM-SIGIR conf. on Infor-
mation Retrieval, pp. 126—134, June 1993.

[52] V. Cate, “Alex - a global filesystem,” Proceedings of the Useniz File Systems Workshop, pp. 1-
11, May 1992.

19

